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COUPLED OSCILLATORS

Introduction. The forces that bind bulk material together have always finite
strength. All materials are therefore to some degree deformable, are (as we
say of those that—unlike gases and liquids—are able to “hold their shape”)
to some degree elastic. When disturbed while at rest in their quiscent state
they quiver.1 In the quiescent state each of the constituent particles was (or
is imagined classically to have been) at rest at a local minimum of the in the
many-body potential U(xxx1, xxx2, . . . , xxxN). Injection of a little bit of energy causes
the particles to move about in the neighborhood of their respective rest sites,
and to begin trading energy amongst themselves. Picture, if you can, of a
3-dimensional multi-particle extension of the situation shown in the first figure
of Chapter 3.

The image just presented is most cleanly realized in crystals (and somewhat
less perfectly—because they are more essentially quantum mechanical—in
molecules). Crystals are macroscopic manifestations of the hidden quantum
mechanics of their sub-microscopic parts: that’s why, for instance, a
crystalographic configuration that can be assembled from atoms A and B
sometimes/usually cannot be assembled from atoms X and Y . But remarkably
many of the essentials of crystal physics can be obtained without reference
to quantum mechanics, by thinking of a crystal as an orderly assembly of
Newtonian point particles connected to one another (usually only to near
neighbors) by springs (see Figure 1). The specific details (masses, connection
pattern, spring strengths) vary, of course, from case to case. But the analytical
principles, and qualitative features of the results to which they lead, are to a
very large degree case-independent. They pertain even to structures (ringing
bells, vibrating airframes) that we would never be inclined to describe as being
“crystaline.”

1 If the disturbance is violent enough they fracture/disintegrate, which poses
a set of physical problems quite different from the ones that will interst us here.
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Figure 1: A simple“classical crystal,”an arrangement of Newtonian
point masses connected to one another by springs. We are interested
in the vibrational properties of such systems.

It is to avoid distracting notational complexities and to gain access to various
graphic devices that we will, at least initially, abandon two space dimensions,
looking to the physics of “one-dimensional crystals.” And we begin with
discussion of the simplest of those—a discussion which will serve already to
expose all of the most characteristic general features of the physics of vibrating
multi-particle systems.

1. A simple “one-dimensional crystal.” Working from Figure 2, we have

m1ẍ1 = F1 + F12 = F net
1

m2ẍ2 = F2 + F21 = F net
2

where
• Fi refers to the force externally impressed upon mi

• Fij refers to the interactive force exerted on mi by mj . Newton’s 3rd Law
asserts that in all cases Fij = −Fji.

The forces could, in this instance, be read directly from the figure, but in more
complicated cases it would be more efficient to introduce the potential energy
function

U(x1, x2) = 1
2k1x

2
1 + 1

2K(x2 − x1)
2 + 1

2k2x
2
2

and to compute

F net
1 = − ∂U

∂x1
= −k1x1 + K(x2 − x1)

F net
2 = − ∂U

∂x2
= −k2x2 − K(x2 − x1)
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k1 m1 K m2 k2

x1 x2

Figure 2: The top figure shows a pair of uncoupled oscillators.
In the middle figure the oscillators have been coupled. In both
figures the masses are shown in their equilibrium positions. The
bottom figure establishes the notation we will use to work out the
dynamics of such a system. The variables x1 and x2 are “excursion
variables ;” they quantify displacement from equilibrium.

We arrive thus at the coupled linear system of equations

m1ẍ1 = −(k1 + K)x1 + Kx2

m2ẍ2 = Kx1 − (k2 + K)x2

}

(1)

Notice that the equations decouple in the limit K ↓ 0. And that we can write

M ẍxx + Kxxx = 000 (2.1)

xxx ≡
(

x1

x2

)

, M ≡
(

m1 0
0 m2

)

, K ≡
(

k1 + K − K
− K k2 + K

)

(2.2)

Drawing inspiration now from the complex variable method as it was
described on page 3 of Chapter 3, we proceed from the Ansatz

zzz(t) = ZZZeiνt : all particles oscillate with the same frequency (3)

to
(

K − ν2
M

)

ZZZ = 000 (4)

This equation will possess non-trivial solutions if and only if det
(

K−ν2M
)

= 0,
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which forces ν2 to be one or the other of the roots of a certain second-order
polynomial. It is to simplify the writing, and to better expose the essence of
what is going on, that we at this point

assume m1 = m2 ≡ m and k1 = k2 ≡ k

We agree, in other words, to look to the case in which identical particles are
attached to identical springs and to each other. Writing

S(ν2) =
(

k + K − K
− K k + K

)

− ν2

(

m 0
0 m

)

we have
det S(ν2) = m2ν4 − 2m(k + K)ν2 + (k2 + 2kK)

which has roots
ω2

1 = k
m

: slow

ω2
2 = k + 2K

m
: fast









(5)

Mathematica now

responds
(

1
1

)

to the command NullSpace[S(ω2
1)]

responds
(

1
−1

)

to the command NullSpace[S(ω2
1)]

We conclude that all instances of

xxx(t) =
{

A1 cos ω1t + B1 sinω1t
}

(

1
1

)

+
{

A2 cos ω2t + B2 sinω2t
}

(

1
−1

) (6)

satisfy
mẍ1 = −(k + K)x1 + Kx2

mx2 = Kx1 − (k + K)x2

}

(7)

and that, since (6) contains four arbitrary constants {A1, B1, A2, B2}, it must
provide the general solution of that coupled pair of second-order equations.
Figures 3 provide graphical interpretations of the slow/fast components of (6),
of which the general solution is a linear combination. They explain in particular
why the slow solution is called the sloshing mode, and the fast solution the
breathing mode.

Suppose, for example, it were stipulated that initially

xxx(0) =
(

A
0

)

and ẋxx(0) =
(

0
0

)
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-1

1

Figure 3A: Sloshingmode, motion described by the “slow solution”
of (7):

xxx slow(t) =
{

A1 cos ω1t + B1 sinω1t
}

(

1
1

)

(8.1)

Note that in this instance the coupling spring K remains constantly
unstretched ; the particles move as would mass 2m on a spring of
strength 2k.

-1

1

Figure 3B: Breathingmode, motion described by the “fast solution”
of (7):

xxx fast(t) =
{

A2 cos ω2t + B2 sinω2t
}

(

1
−1

)

(8.2)

In this instance the K-spring is stretched maximally during each
oscillation.
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1

-1

Figure 4: Energy is initially invested in the compression of the
spring attached to the blue particle, which is in this instance only
weakly coupled to the red particle. With the passage of time energy is
traded back and forth between the two particles (and their associated
springs).

We would then have
A1 + A2 = A

A1 − A2 = 0
ω1B1 + ω2B2 = 0
ω1B1 − ω2B2 = 0

giving
A1 = 1

2A

A2 = 1
2A

B1 = 0
B2 = 0

The resulting function

xxx(t) = 1
2A

{
cos ω1t ·

(
1
1

)
+ cos ω2t ·

(
1
−1

) }
(9)

is graphed in Figure 4.

The pattern evident in the figure can be understood by an argument
identical to that which in acoustics serves to account for “beats.” We have
(use Mathematica’s TrigFactor command)

x1(t) = 1
2A

{
cos ω1t + cos ω2t

}
= A cos 1

2 (ω2 − ω1)t · cos 1
2 (ω2 + ω1)t

where ω2 =
[

k+2K
m

] 1
2 = ω1[1 + 2K/k]

1
2 = ω1

{
1 + (K/k) + · · ·

}
. Weak coupling

means that K/k � 1, so we have ω2 = ω1 + ∆ω with ∆ω ≈ ω1· (K/k), giving
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x1(t) = A cos[(∆ω)t] · cos[ ω̄ t]
= A

(

slow modulation factor
)

·
(

fast oscillation of mean frequency ω̄ ≡ ω1+ω2
2

)

Though technically the “energy exchange frequency” (beat frequency) is ∆ω,
the perceived exchange frequency is 2∆ω, since it goes waa-waa per period.

The initial-condition-matching calculations that led to (9) are made much
easier by the observation that the vectors

XXX1 ≡ 1√
2

(

1
1

)

and XXX2 ≡ 1√
2

(

1
−1

)

(10)

are orthogonal (are, in fact, orthonormal). For it is then immediate that

xxx0 = (xxx0 ···XXX1)XXX1 + (xxx0 ···XXX2)XXX2

ẋxx0 = (ẋxx0 ···XXX1)XXX1 + (ẋxx0 ···XXX2)XXX2

}

(11)

from which we obtain

xxx(t) =
{

(xxx0 ···XXX1) cos ω1t + (ẋxx0 ···XXX1)
sinω1t

ω1

}

XXX1

+
{

(xxx0 ···XXX2) cos ω1t + (ẋxx0 ···XXX2)
sinω1t

ω1

}

XXX2

(12)

The dynamical motion of xxx(t) is displayed here as a superposition of the excited
normal modes2 of the system. We found it initially quite natural to write

xxx = x1eee1 + x2eee2 with eee1 ≡
(

1
0

)

, eee2 ≡
(

0
1

)

but found that from a dynamical standpoint it is more natural/informative to
write

xxx = ξ1XXX1 + ξ2XXX2

The eeei refer to particles individually, the XXXi refer to them in what have been
revealed to be certain dynamically natural collective combinations.

2. A slightly less simple “one-dimensional crystal.” Working now from Figure 5
we have U(x1, x2, x3) = 1

2k
{

x2
1 + (x2 − x1)2 + (x3 − x2)2 + x2

3

}

. The resulting
equations of motion

mẍ1 = −k
{

2x1 − x2

}

mẍ2 = −k
{

− x1 + 2x2 − x3

}

mẍ3 = −k
{

− x2 + 2x3

}

2 They should more properly be called “orthogonal modes.” Here “normal”
refers not to “unit length” but—as in geometry—to perpendicularity.
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k m k m k m k

x1 x2 x3

Figure 5: One-dimensional crystal assembled from three identical
“atoms” connected to one another and to the walls by identical
springs.

can be written

m





1 0 0
0 1 0
0 0 1



ẍxx + k





2 −1 0
−1 2 −1

0 −1 2



xxx = 000

and abbreviated3 m I ẍxx + k Sxxx = 000

Proceeding once again from the Ansatz zzz(t) = ZZZeiνt we have

( S − λI )ZZZ = 000 (13)

with λ ≡ (ν/ω)2 and ω2 ≡ k/m. But (13) presents an instance of the eigenvalue
problem, in its purest form.4 Solutions exist only if λ is one of the eigenvalues
of S. And because S is real and symmetric we know that the eigenvalues will
be real, and that the associated eigenvectors will be orthogonal. Mathematica,
in response to the command Eigensystem, informs us that

λ1 = 2 −
√

2 has normalized eigenvector XXX1 = 1
2





1
+
√

2
1





λ2 = 2 has normalized eigenvector XXX2 = 1√
2





1
0
−1





λ3 = 2 +
√

2 has normalized eigenvector XXX3 = 1
2





1
−
√

2
1





































(14)

The modal frequencies are ν1 =
√

2 −
√

2 ω, ν2 =
√

2 ω, ν3 =
√

2 +
√

2 ω and
the characteristic patterns of modal vibration are shown in the following figure:

3 My notation is intended to emphasize the Symmetry of the Spring matrix.
4 See again §5 in Chapter 1.
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1

-1

1

Figure 6: Modal vibration patterns of the tri-atomic system shown
in Figure 5. The frequencies and relative amplitudes have been
drawn in correct proportion.
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PROBLEM 1 : Modify the tri-atomic system shown in Figure 5
by installation of a fifth spring (spring constant k, like the other
springs) that serves to attach the central particle to its equilibrium
point (as shown in the figure it is attached only to its neighbors).
Write the new potential U(x1, x2, x3), write the new S matrix,
calculate (i.e., ask Mathematica to calculate) the new modal
frequencies

{

ν1, ν2, ν3

}

and the new normalized eigenvectors
{

XXX1,XXX2,XXX3

}

. Demonstrate that the latter vectors are orthogonal.

3. One-dimensional diatomicmolecule. Every diatomic molecule is 1-dimensional
in the sense that “two points determine a line.” But real diatomic molecules can
tumble/spin, and that is an important aspect of their physics that we intend
here to set aside. We have interest only in the vibrational physics of such
structures. Proceeding in reference to Figure 7, we confront at the outset this
sticky problem:

How—to make the argument as simple as possible—should we proceed to
“coordinatize” the molecule? We know from elementary mechanics that in the
absence of externally impressed forces its center of mass

X = m1x1 + m2x2

m1 + m2

moves uniformly,5 and can without loss of generality be assumed to be at rest.
The implication is that displacements of m1 relative to the center of mass dictate
counterbalancing displacements of m2: if m1 is displaced a distance ξ1 toward
the center of mass then m2 is displaced a distance ξ2 = −(m1/m2)ξ1 and the
distance between the particles shrinks by

[

1 + (m1/m2)
]

ξ1 = m1 + m2

m2
ξ1

If the particles sat originally at their equilibrium points (i.e., a molecular length
a from each other) then m1 has come to feel the opposing spring force that
appears on the right side of the following equation:6

m1ξ̈1 = −K
m1 + m2

m2
ξ1

5 We have, relative to an inertial frame,

m1ẍ1 = F12

m2ẍ2 = F21

F21 = −F12 by Newton’s 3rd Law

Addition gives Ẍ = 0.
6 From this equation it follows, by the way, as a redundant corollary, that

m2ξ̈2 = −K
m1 + m2

m1
ξ2
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m1 K m2

ξ1 ξ2

Figure 7: Shown above : a relaxed diatomic molecule. Shown below :
snapshot of the same molecule in an excited state. The dotted line
marks the location of the unmoved center of mass.

We conclude that the two particles “counter-oscillate,” with frequency

ν =
√

K
m1 + m2

m1m2
(15)

and with relative amplitudes fixed by the requirement that the center of mass
remain fixed.

The preceding argument was elementary but tedious. It felt improvisatory.
And it appeared on its face to favor m1, discriminate against m2, though no
such asymmetry is presented by the molecule itself. All those defects, it is pretty
clear, will become instantly more serious the moment we turn our attention to
more complicated molecules. I describe now an alternative, more symmetrical
line of argument: it proceedes from the observation that the crystal of Figure 2
turns into the molecule of Figure 7 when the endsprings are turned off: k1↓ 0
and k2↓ 0. The equations of motion (1) then become

m1ẍ1 = −Kx1 + Kx2

m2ẍ2 = Kx1 − Kx2

}

(16)

Arguing now precisely as we argued on page 3—the only difference being that
now

K =
(

+K −K
−K +K

)

—we arrive again at the requirement that

det
(

K − ν2
M

)

= ν2 · [m1m2ν
2 − K(m1 + m2)] = 0

So necessarily ν2 has one or the other of the values

ν2
0 = 0 or ν2

1 =
√

K
m1 + m2

m1m2
(17.1)
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Only in those cases can the equation
(

K−ν2M
)

ZZZ = 000 be solved. Mathematica’s
NullSpace command supplies

ZZZ0 =
(

1
1

)

or ZZZ1 =
(

1
−(m1/m2)

)

(17.2)

respectively. The first solution describes a non-oscillatory drift of the center of
mass, the second describes precisely the counter-oscillatory internal vibration
that we encountered before.

PROBLEM 2 : Mimic the preceding argument as it pertains to
the linear tri-atomic molecule that is formed by removal of the
endsprings from the 3-atom crystal shown in Figure 5. Retain the
simplifying assumption that all three particles have the same mass
m, and that the remaining springs both have strength k. Construct
figures in the style of Figure 6 that illustrate the modes of internal
vibration of such a molecule.

Why are the vectors ZZZ0 and ZZZ1 not orthogonal unless m1/m2 = 1? Because
only in that case (i.e., only when m1 = m2 ≡ m) does

(

K−ν2M
)

ZZZ = 000 provide
an instance of the eigenvalue problem: only then can that equation be written

(

K − λ I
)

ZZZ = 000 : λ ≡ ν2m

A true eigenvalue problem does, however, lie always close at hand. I show now
how to get there.

Suppose M could be written M = NN. We would then have

N
(

N
–1

K N
–1 − λ I

)

NZZZ = 000

which when multiplied on the left by N –1 becomes

( K̃ − λ I) Z̃ZZ = 000

(here K̃ ≡N –1K N –1 andZ̃ZZ ≡NZZZ ),which does present a true eigenvalue problem.
From det(AB) = det A·det B it follows moreover that

det( K̃ − λ I) = det( K − λ M)
(det N)2

so the roots of det( K̃ − λ I) = 0 (eigenvalues of K̃) coincide with the roots of
det( K − λ M) = 0.

Observe finally that if M is symmetric then so also are each of its square
roots N. And that if N is symmetric then so also is N –1. And that if K

is symmetric then so also is K̃. So the eigenvectors Z̃ZZi of K̃—at least those
associated with distinct eigenvalues—are necessarily orthogonal in the familiar
sense

Z̃ZZi
TZ̃ZZj = 0 if i '= j

The vectors ZZZi are therefore orthogonal in the unfamiliar sense

ZZZi
T
MZZZj = 0 if i '= j
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EXAMPLE: Returning with these ideas to the case at hand, from

M =
(

m1 0
0 m2

)

we obtain

N =
(√

m1 0
0

√
m2

)

and N
–1 =

(
1√
m1

0
0 1√

m2

)

From
K = K

(

1 −1
−1 1

)

it therefore follows that

K̃ =

(
1

m1
− 1√

m1m2

− 1√
m1m2

1
m2

)

The command Eigensystem[ K̃ ] supplies eigenvalues

λ0 = 0 and λ1 = m1 + m2

m1m2

and associated (not-yet-normalized) eigenvectors

Z̃ZZ0 =
(√

m1√
m2

)

and Z̃ZZ1 =
( √

m2

−√
m1

)

which are clearly orthogonal in the standard sense: Z̃ZZ0
TZ̃ZZ1 = 0. The

vectors

ZZZ0 = N
–1Z̃ZZ0 =

(

1
1

)

ZZZ1 = N
–1Z̃ZZ1 =

( √

m2/m1

−
√

m1/m2

)

=
√

m2/m1

(

1
−(m1/m2)

)

are “orthogonal relative to the M-metric”: ZZZ0
TMZZZ1 = 0.

It is to expose an important respect in which the preceding discussion is
restricted/specialized, and to motivate discussion of how that specialization
might be relaxed, that I turn now to study of some simple

4. Coupled electrical circuits. Proximate electrical circuits interact magnetically,
by “mutual induction.” For the circuits shown in Figure 8 we have

L1q̈1 + Mq̈2 + C1
–1q1 = 0

L2q̈2 + Mq̈1 + C1
–1q2 = 0
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C1 L1 L2 C2

M

Figure 8: A pair of LC circuits. Each is responsive to the changing
magnetic fields generated by time-dependent currents in the other.
The mutual inductance M quantifies the strength of the interaction.

which can be written
(

L1 M
M L2

) (

q̈1

q̈2

)

+
(

C1
–1 0

0 C2
–1

) (

q1

q2

)

=
(

0
0

)

and abbreviated7

M ẍxx + Kxxx = 000 (18.1)

xxx ≡
(

q1

q2

)

, M ≡
(

L1 M
M L2

)

, K ≡
(

C1
–1 0

0 C2
–1

)

(18.2)

On the strength once again of the Ansatz zzz(t) = ZZZ eiνt we are led to an equation

(

K − ν2
M

)

ZZZ = 000 (19)

that is structurally identical to the mechanical equation (4), the difference being
that in (4) the coupling was accomplished by the off-diagonal elements of the
K-matrix (which is to say: with the aid of springs), but in (19) is accomplished
by off-diagonal elements of the M-matrix. This detail requires us to introduce
a preliminary step to our analytical procedure:

We know from (25.2) in Chapter 1 that the real symmetric matrix M can
be developed

M = R

(

m1 0
0 m2

)

R
–1 : R

–1 = R
T

where the mi are the (assuredly real) eigenvalues of M, and the rotation matrix
R has been assembled from its eigenvectors. Equation (19) can therefore be
written

R

[

R
–1

KR − ν2

(

m1 0
0 m2

) ]

R
–1ZZZ = 000

and from here on we can proceed as before: takkng N to be any one of the 22

7 My notation—electrically quite unnatural as it admittedly is—has been
designed to underscore parallelism with our previous mechanical work.
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square roots of M

N =
(

±√
m1 0

0 ±√
m2

)

we write

RN

[

N
–1

R
–1

KRN
–1

︸ ︷︷ ︸
−ν2· N –1

(

m1 0
0 m2

)

N
–1

︸ ︷︷ ︸

]

NR
–1ZZZ

︸ ︷︷ ︸
= 000

K̃ Z̃ZZ
I

From the symmetry of K and N –1 and the fact that R is a rotation matrix
( R –1 = R T) we readily deduce the symmetry of K̃. It is clear moreover that

det(K − λM) = 0 ⇐⇒ det(K̃ − λI) = 0

The plan, therefore, would be to compute the eigenvalues λi = ν2
i and the

associated eigenvectors Z̃ZZi. The vectors ZZZi = RN –1Z̃ZZi will serve then to describe
(in variables of direct physical significance) the vibrational modes of the system.

From the vectors Z̃ZZi one can assemble the rotation matrix R̃ that serves
(see again (25.1) in Chapter 1) to diagonalize K̃

R̃
T
K̃R̃ =

(

λ1 0
0 λ2

)

while at the same time preserving the already-achieved diagonalization of
M̃ = I:

R̃
T

(

1 0
0 1

)

R̃ =
(

1 0
0 1

)

The argument is seen therefore to hinge on the possibility of simultaneously
diagonalizing two symmetric matrices—the point of the simultaneous
diagonalization being to decouple the equations of motion.

An interesting problem is brought to light when (as would be physically
quite natural) one introduces resistance into the circuits. The coupled equations
of motion (18) then read

M ẍxx + 2Gẋxx + Kxxx = 000 with 2G ≡
(

R1 0
0 R2

)

Proceeding as above, one achieves
{

M, G, K
}

*−→
{

I, G̃, K̃diagonal

}

. But the
process will, in general, destroy the initial diagonality of G. And any effort to
diagonalize G̃ will, in general, de-diagonalize K̃diagonal.

It is, in general, not possible to simultaneously
diagonalize three or more symmetric matrices.
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All, however, is not lost: one can still
• complexify;
• assume zzz(t) = ZZZ eiνt to obtain

(K + 2iν G − ν2
M )ZZZ = 0

which is a polynomial of order four in ν;
• use Solve[Det[K + 2iν G − ν2 M ]== 0, ν] to evaluate ν1, ν2, ν3 and ν4;
• use NullSpace[ K + 2iνj G− ν2

j M ] to discover the associated vectors ZZZj .

EXAMPLE: Define F(ν) ≡ K + 2iν G − ν2 M with

K =
(

4 0
0 5

)

, G =
(

1 0
0 2

)

, M =
(

8 1
1 9

)

Command Solve[Det[ F(ν)]== 0] and obtain roots

ν1 = +0.734 + 0.220i

ν2 = −0.734 + 0.220i

ν3 = +0.680 + 0.132i

ν4 = −0.680 + 0.132i

Command NullSpace[F(νi)]//Transpose//MatrixForm and get

ZZZ1 =
(

+0.442 + 0.069i
−0.604 − 0.660i

)

ZZZ2 =
(

+0.442 − 0.069i
−0.604 + 0.660i

)

ZZZ3 =
(

−0.459 − 0.807i
−0.358 − 0.098i

)

ZZZ4 =
(

−0.459 + 0.807i
−0.358 + 0.098i

)

Command ComplexExpand[Exp[iνpt]ZZZp] and obtain

zzz1(t) = xxx1(t) + iyyy1(t)
zzz2(t) = xxx2(t) + iyyy2(t)

and their complex conjugates, with

xxx1(t) = e−0.220 t

(

+0.442 cos(0.734t) − 0.069 sin(0.734t)
−0.604 cos(0.734t) + 0.660 sin(0.734t)

)

yyy1(t) = e−0.220 t

(

+0.069 cos(0.734t) + 0.442 sin(0.734t)
−0.660 cos(0.734t) − 0.604 sin(0.734t)

)

xxx2(t) = e−0.132 t

(

−0.459 cos(0.680t) + 0.807 sin(0.680t)
−0.358 cos(0.680t) + 0.098 sin(0.680t)

)

yyy2(t) = e−0.132 t

(

−0.807 cos(0.680t) − 0.459 sin(0.680t)
−0.098 cos(0.680t) − 0.358 sin(0.680t)

)
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By calculation we confirm that each of those vector-valued functions
satisfies the coupled differential equation of motion

M ẍxx + 2Gẋxx + Kxxx = 000

To discover the general solution

xxx(t) = a1xxx1(t) + b1yyy1(t) + a2xxx2(t) + b2yyy2(t)

that conforms to prescibes initial data xxx0 and ẋxx0 one has to discover
the

{

a1, b1, a2, b2

}

-values that satisfy a quartet of simultaneous
linear equations (which I will not trouble to spell out), the point
being that orthonormality is no longer available as a computational
tool: the “normal modes” are no longer normal!

Figure 9A: Shown above: graphs of the top and bottom components
of xxx1(t). Shown below : graphs of yyy1(t), color coded in the same way.
In each case one component is a bit out of phase with respect to the
other.
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Figure 9B: Shown above: graphs of the top and bottom components
of xxx2(t). Shown below : graphs of yyy2(t), color coded in the same way.

In constructing the example I have honored the electrodynamical principle
which asserts that in all cases L1L2 − M2 = det M > 0.8 The computational
method just described works in all cases (though it is my experience that in
cases that violate the condition just described it leads sometimes to absurd
results)—whether or not damping terms are present—and in practical situations
is arguably superior to the more formal/abstract/theoretical method described
earlier.

PROBLEM 3 : Report how the preceding example would read after
the definitions of M and K are interchanged (an adjustment that
puts the coupling in what in mechanics we would call the “spring
matrix”).

8 This is one consequence of the more general statement that the energy
stored in a magnetic field is never negative: see electrodynamics (/),
Chapter 1, pages 86 & 99. When looks to the theory of coupled mechanical
oscillators the the statement det M > 0 becomes simply a statement of the
non-negativity of kinetic energy—than which nothing could be more obvious!
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5. Response of molecules to harmonic stimulation. Many of the vibrating
structures of greatest physical interest are too small to be examined directly.
Valuable circumstantial information can be obtain in such cases by “buzzing”
the structure—usually with tunable mircowave, infrared or optical radiation—
and measuring the enthusiasm with which the structure drinks incident energy.
We look now into the physics of the matter, which is of direct relevance also
to such macroscopic phenomena as the collapse () of the Tacoma Narrows
bridge.9

To describe the damped vibration of a linear system with n degrees of
freedom we have learned to write

M ẍxx + 2Gẋxx + Kxxx = 000

where xxx is an n-vector, where {M, G, K} are real n× n matrices, and where
M, K and usually also G are symmetric. If the system is subject to external
stimulation we have

M ẍxx + 2Gẋxx + Kxxx = FFF (t) with FFF (t) =







F1(t)
F2(t)

...
Fn(t)







We will restrict our attention here to cases of the harmonic form

FFF (t) = FFFeiν t with FFF =







F1

F2
...

Fn







and will look for solutions of the form zzz(t) = ZZZ(ν)eiν t. Immediately

ZZZ(ν) =
[

K + 2iν G − ν2
M

]–1
FFF

In the absence of damping (G = O) the matrix
[

K− ν2 M
]–1 would fail to exist

whenever ν becomes equal to one or another of the (necessarily real!) zeros
of det

[

K − ν2 M
]

. But as the damping term is turned on—this we have on
the evidence of the νis reported on page 16 (see Figure 10), but is, for the
most fundamental of reasons,10 true quite generally—the zeros drift off the real
axis onto the upper half (never the lower half) of the complex plane. With this
consequence: as we tune the ν-dial on our stimulus machine (i.e., as we range on
the real axis in ν-space) we never hit a frequency at which

[

K+2iν G−ν2 M
]–1

9 http://www.enm.bris.ac.uk/research/nonlinear/tacoma/tacoma.html#file.
10 Those “fundamental reasons” have to do with causality: effects do not

precede their causes, response does not precede stimulus. In which connection
we note that energy dissipation assigns an arrow to time.
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Figure 10: The complex zeros
{

ν1, ν2, ν3, ν4

}

encountered in our
recent example are symmetrically positions on the upper half of
the complex ν-plane, and are in this respect—and for the most
fundamental of reasons—quite typical.

blows up. Resolve
[

K + 2iν G − ν2 M
]–1 into its real and imaginary parts

[

K + 2iν G − ν2
M

]–1 = S(ν) + iT(ν)

where the symmetry of K, G and M is readily seen to imply that of the real
matrices S and T. We conclude that harmonic stimulation FFF cos ν t of the system
produces the harmonic response

xxxν(t) =
[

S(ν) cos ν t − T(ν) sin ν t
]

FFF (20)

The energy of the system is given by

E(t) = 1
2 ẋxxT

M ẋxx + 1
2xxxT

K xxx

= 1
2ν2FFF T

[

sin2 νt · SMS + sin νt cos νt · (SMT + TMS) + cos2 νt · TMT
]

FFF

+ 1
2FFF T

[

cos2 νt · SKS − sin νt cos νt · (SKT + TKS) + sin2 νt · TKT
]

FFF

which ripples with frequency 2ν. Averaging over a period we get

〈E 〉 = 1
2ν2FFF T

[
1
2SMS + 1

2TMT
]

FFF

+ 1
2FFF T

[
1
2SKS + 1

2TKT
]

FFF
(21)

which presents 〈E 〉 as a complicated function of ν.

EXAMPLE: Consider the 2-particle system with

M =
(

1 0
0 1

)

, G = 1
80

(

9 1
1 9

)

, K =
(

2 −1
−1 2

)

Construct R[ν]= K + 2iν G − ν2 M, command

Solve[Det[R[ν]]= 0, ν]//N
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and get
ν1 = ±0.992 + 0.125i

ν2 = ±1.729 + 0.100i

[remark: I have concocted the example so as to make the real parts
of these complex roots fairly widely spaced, and the imaginary parts
relatively small.] Now enter serially the commands

Inverse[R[ν]]

ComplexExpand[%]

Re[%]

ComplexExpand[%]

Simplify[%]

S=%
T=-i(Inverse[R[ν]]-S)//Simplify

One has only to execute these commands to discover why I have
not committed the results to paper! Let us now, in the interest of
simplicity, assume that the stimulus acts only upon particle #1:

F=

(

1
0

)

Command

1
4ν2Transpose[F].(S.M.S+T.M.T).F

+ 1
4Transpose[F].(S.K.S+T.K.T).F//Simplify

and obtain

〈E 〉ν = 4000 + 1641ν2 − 3909ν4 + 1600ν6

8(3600 − 9359ν2 + 8619ν4 − 3159ν6 + 400ν8)
(22)

which is plotted in Figure 11. It should be noted that the peaks
occur at frequencies near the real parts of ν1 and ν2, and are broad
or narrow according as the imaginary part of the νi in question
is large or small. It would not be difficult, working from the
unreported details, to speak quantitatively about the fact that the
constituent “atoms,” though they oscillate with the same frequency
as the stimulus, move out of phase not only with the stimulus but
also with each other.

It will also be appreciated that the information conveyed by
such a spectrum is far less from definitive, in the sense that it
is pretty obviously insufficient to permit one to reconstruct the
matrices M, G and K and on that basis to attempt to reconstruct
the design of the molecule.
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1 2 3

Figure 11: Graph of the molecular energy spectrum (22) that was
latent in the most recent example. Specifically : one atom receives
unit stimulus of frequency ν; the graph shows the ν-dependence of
the steady mean energy 〈E 〉ν of the thus-stimulated molecule.

To summarize: The physical objects of interest move as described by the
coupled linear equations of motion

[M∂2 + 2G∂ + K ]xxx(t) = FFF (t) (23.1)

where the matrices are symmetric, and ∂ ≡ d
dt . It is always possible to write

W[M∂2 + 2G∂ + K ]W –1 · Wxxx(t) = WFFF (t)
⇓

[M̃∂2 + 2G̃∂ + K̃ ]x̃xx(t) = F̃FF (t) (23.2)

If one of the matrices (G̃, let us say) is absent (because we have “turned of the
damping”) then one can always choose W in such a way that the remaining
matrices are diagonal: the equations of motion will then be uncoupled, each
presenting a copy of the equation

[m̃i∂
2 + k̃i] x̃i(t) = F̃i(t) : i = 1, 2, . . . , n (24)

familiar from the theory of single (driven but undamped) oscillators (see again
§5 in Chapter 3). It becomes natural in such cases to write x̃xx(t) =

∑

i x̃i(t)eeei

and to speak of independently stimulated non-interactive “normal modes.” But
if all three matrices are present then we confront the full force of the fact that
it is not in general possible to diagonalize three matrices simultaneously: it is,
for that reason, generally not possible to decouple the equations of motion, and
the “non-interactive mode” concept loses not only its utility but also its very
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meaning. One might elect, in place of (24), to write

[m̃i∂
2 + 2 g̃i∂ + k̃i] x̃i(t) = F̃i(t) : i = 1, 2, . . . , n

but to do so—to introduce “modal damping” parameters—is to assume that the
system-matrices

{

M, G, K
}

can—exceptionally—be simultaneously diagonalized
. . . and this is an assumption that would in most instances have no physical
justification.11 The method described just above proceeds, however, without
reference either to matrix diagonalization or to the modal concept. And it
works just as efficiently when the G term is present as when it is absent. To
illustrate these points we look to a final

EXAMPLE: The 3-atom crystal, revisited: We look first, by way of
orientation, to the

undamped crystal in natural coordinates We set both m
and k equal to unity and have

M =





1 0 0
0 1 0
0 0 1



 , G =





0 0 0
0 0 0
0 0 0



 , K =





2 −1 0
−1 2 −1

0 −1 2





We construct R(ν) and find that det R(ν) has roots

ν1 = ±0.765
ν2 = ±1.414
ν3 = ±1.847









(25.1)

Running this data through our algorithm we obtain

〈E 〉ν = 14 − 16ν2 − 9ν4 + 26ν6 − 13ν8 + 2ν10

(2 − ν2)2(2 − 4ν2 + ν4)2
(25.2)

when the stimulus vector has been taken to be

FFF =





1
0
0





This spectrum is displayed as Figure 12A. From (14) we are led
to the observation that

W KW
–1 =





2 −
√

2 0 0
0 2 0
0 0 2 +

√
2



 ≡





k1 0 0
0 k2 0
0 0 k3





11 This train of thought is developed in the final pages of second course in
classical mechanics (), Chapter 3, §10.



24 Coupled oscillators

1 2 3

Figure 12A: Graph of the undamped spectrum (25.2).
The singularities stand at the frequencies (25.1).

where

W = 1
2





1 −
√

2 1
+
√

2 0 −
√

2
1 +

√
2 1





is a proper rotation matrix: W –1 = W T and det W = 1. In the
present instance it is the matrix that describes how natural
coordinates must be combined to produce modal coordinates.

weak modal damping in natural coordinates All matrices
of the form

G = W
–1





g1 0 0
0 g2 0
0 0 g3



 W

can—by contrivance—be diagonalized simultaneously with M and
K, and therefore achieve what I have called “modal damping.”
Setting g1 = 1

8 , g2 = 1
12 and g3 = 1

10 we find

ν1 = ±0.758 + 0.100i

ν2 = ±1.412 + 0.083i

ν3 = ±1.844 + 0.125i









(25.3)

and are led to the spectrum shown in Figure 12B, the analytical
description of which is much too complicated to write out. Notice
that

imaginary part of ν1 = g3i

imaginary part of ν2 = g2i

imaginary part of ν3 = g1i
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1 2 3

Figure 12B: Graph of the modally damped spectrum
developed in the text. The peaks stand at the slightly
depressed frequencies (25.3).

1 2 3

Figure 12C: Graph of the non-modally damped energy
spectrum developed in the text. Imaginary parts of the
νi can no longer be described in a simple way.

non-modal damping in natural coordinates Matrices of
the form

G = W
–1





g1 h3 h2

h3 g2 h1

h2 h1 g3



 W

—by contrivance—cannot be diagonalized simultaneously with M

and K, and therefore achieve what I call “non-modal damping.”
Retaining the former values of g1 = 1

8 , g2 = 1
12 and g3 = 1

10 , we set
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h1 = h3 = 1
7 , h2 = 1

8 and find

ν1 = ±0.792 + 0.105i

ν2 = ±1.408 + 0.103i

ν3 = ±1.769 + 0.099i









(25.4)

The resulting spectrum is shown in Figure 12C.

non-modal damping in “modal coordinates” Just above
we studied an instance of (23.1)

[M∂2 + 2G∂ + K ]xxx(t) = FFF (t)

in which

M =





m 0 0
0 m 0
0 0 m





K = W
–1





k1 0 0
0 k2 0
0 0 k3



 W

G = W
–1





g1 h3 h2

h2 g2 h1

h2 h1 g3



 W

Passing—as indicated at (23.2)— to coordinates that are normal
with respect to the undamped crystal we obtain



m





1 0 0
0 1 0
0 0 1



∂2 +2





g1 0 0
0 g2 0
0 0 g3



∂ +2H∂ +





k1 0 0
0 k2 0
0 0 k3







x̃xx =F̃FF

with H =





0 h3 h2

h3 0 h1

h2 h1 0





The point I would emphasize is that the H-matrix serves to couple
those equations. One could diagonalize H, but that effort would
serve to de-diagonalize the matrices that have gis and his on their
diagonals. Such systems of equations cannot be decoupled: one
cannot, in such a context, speak meaningfully of “normal modes,”
though it does remain meaningful/useful to speak of “resonances.”

Notable features of the preceding discussion are that it proceeds in natural
coordinates, makes no use of the modal concept (so pertains to situations in
which that concept is not available), yet does permit one to construct detailed
descriptions of particle motions at resonance.




